Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Pharmacol ; 14: 1243505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089059

RESUMO

Background: We hypothesize that the poor survival outcomes of end-stage kidney disease (ESKD) patients undergoing hemodialysis are associated with a low filtering efficiency and selectivity. The current gold standard criteria using single or several markers show an inability to predict or disclose the treatment effect and disease progression accurately. Methods: We performed an integrated mass spectrometry-based metabolomic and proteomic workflow capable of detecting and quantifying circulating small molecules and proteins in the serum of ESKD patients. Markers linked to cardiovascular disease (CVD) were validated on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Results: We identified dozens of elevated molecules in the serum of patients compared with healthy controls. Surprisingly, many metabolites, including lipids, remained at an elevated blood concentration despite dialysis. These molecules and their associated physical interaction networks are correlated with clinical complications in chronic kidney disease. This study confirmed two uremic toxins associated with CVD, a major risk for patients with ESKD. Conclusion: The retained molecules and metabolite-protein interaction network address a knowledge gap of candidate uremic toxins associated with clinical complications in patients undergoing dialysis, providing mechanistic insights and potential drug discovery strategies for ESKD.

3.
Methods Mol Biol ; 2660: 137-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191795

RESUMO

Mass spectrometry (MS) is an important tool for biological studies because it is capable of interrogating a diversity of biomolecules (proteins, drugs, metabolites) not captured via alternate genomic platforms. Unfortunately, downstream data analysis becomes complicated when attempting to evaluate and integrate measurements of different molecular classes and requires the aggregation of expertise from different relevant disciplines. This complexity represents a significant bottleneck that limits the routine deployment of MS-based multi-omic methods, despite the unmatched biological and functional insight the data can provide. To address this unmet need, our group introduced Omics Notebook as an open-source framework for facilitating exploratory analysis, reporting and integrating MS-based multi-omic data in a way that is automated, reproducible and customizable. By deploying this pipeline, we have devised a framework for researchers to more rapidly identify functional patterns across complex data types and focus on statistically significant and biologically interesting aspects of their multi-omic profiling experiments. This chapter aims to describe a protocol which leverages our publicly accessible tools to analyze and integrate data from high-throughput proteomics and metabolomics experiments and produce reports that will facilitate more impactful research, cross-institutional collaborations, and wider data dissemination.


Assuntos
Proteômica , Software , Proteômica/métodos , Metabolômica/métodos , Genômica , Redes e Vias Metabólicas
4.
Structure ; 27(6): 907-922.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30956132

RESUMO

The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.


Assuntos
Cobre/química , Simulação de Dinâmica Molecular , Mutação , Proteínas Priônicas/química , Proteínas Priônicas/genética , Domínios Proteicos , Animais , Linhagem Celular , Cobre/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Proteínas Priônicas/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos
5.
J Am Soc Mass Spectrom ; 26(8): 1299-310, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002792

RESUMO

Hemoglobinopathies are the most common inherited disorders in humans and are thus the target of screening programs worldwide. Over the past decade, mass spectrometry (MS) has gained a more important role as a clinical means to diagnose variants, and a number of approaches have been proposed for characterization. Here we investigate the use of matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS) with sequencing using in-source decay (MALDI-ISD) for the characterization of Hb variants. We explored the effect of matrix selection using super DHB or 1,5-diaminonaphthalene on ISD fragment ion yield and distribution. MALDI-ISD MS of whole blood using super DHB simultaneously provided molecular weights for the alpha and beta chains, as well as extensive fragmentation in the form of sequence defining c-, (z + 2)-, and y-ion series. We observed sequence coverage on the first 70 amino acids positions from the N- and C-termini of the alpha and beta chains in a single experiment. An abundant beta chain N-terminal fragment ion corresponding to ßc34 was determined to be a diagnostic marker ion for Hb S (ß6 Glu→Val, sickle cell), Hb C (ß6 Glu→Lys), and potentially for Hb E (ß26 Glu→Lys). The MALDI-ISD analysis of Hb S and HbSC yielded mass shifts corresponding to the variants, demonstrating the potential for high-throughput screening. Characterization of an alpha chain variant, Hb Westmead (α122 His→Gln), generated fragments that established the location of the variant. This study is the first clinical application of MALDI-ISD MS for the determination and characterization of hemoglobin variants.


Assuntos
Hemoglobinas/análise , Hemoglobinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Hemoglobinopatias/sangue , Humanos , Dados de Sequência Molecular , Mapeamento de Peptídeos/métodos , Análise de Sequência de Proteína/métodos
6.
J Proteome Res ; 13(10): 4347-55, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25153361

RESUMO

A glycoprotein may contain several sites of glycosylation, each of which is heterogeneous. As a consequence of glycoform diversity and signal suppression from nonglycosylated peptides that ionize more efficiently, typical reversed-phase LC-MS and bottom-up proteomics database searching workflows do not perform well for identification of site-specific glycosylation for complex glycoproteins. We present an LC-MS system for enrichment, separation, and analysis of glycopeptides from complex glycoproteins (>4 N-glycosylation sequons) in a single step. This system uses an online HILIC enrichment trap prior to reversed-phase C18-MS analysis. We demonstrated the effectiveness of the system using a set of glycoproteins including human transferrin (2 sequons), human alpha-1-acid glycoprotein (5 sequons), and influenza A virus hemagglutinin (9 sequons). The online enrichment renders glycopeptides the most abundant ions detected, thereby facilitating the generation of high-quality data-dependent tandem mass spectra. The tandem mass spectra exhibited product ions from both glycan and peptide backbone dissociation for a majority of the glycopeptides tested using collisionally activated dissociation that served to confidently assign site-specific glycosylation. We demonstrated the value of our system to define site-specific glycosylation using a hemagglutinin containing 9 N-glycosylation sequons from a single HILIC-C18-MS acquisition.


Assuntos
Glicoproteínas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Glicoproteínas/química , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Espectrometria de Massas , Orosomucoide/química , Orosomucoide/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...